

38% of the global peanut production takes place in underdeveloped regions, 53% in developing and only 9% in developed regions. How can the developed regions maintain a global export market share of 45%?

Trade Statistics

Developed regions has over 45% of international trade of peanut and its derivatives in value terms. The large % mirrors the value stream integration and development of the agriculture and industrialisation in these regions. While a reasonable export share in the global trade is considered as a milestone in development, several large volume producers such as Nigeria still export only less than 1% of their total production. Even in developing economies much as India, the producing regions are in underdeveloped or developing phase, i.e., the peanut butter market in India consumes less than 1.2%

of the total production, whereas the traditional edible oil market consumes 12%, similarly in Indonesia, one of the major producer and importers of peanuts consumes less than 0.50% in peanut oil and 3% in peanut butter consumption. Comparatively, developed regions on average produces 213% more peanuts/HA than the underdeveloped regions.

Characterising the Regions

GDP of Brazil is 2.27 T USD. while GDP of China is 18.5 T USD and India 4.1 T USD, does this means that the region's development has nothing to do with the country's economic conditions? Average land

The state of the economy plays a significant role in industrialisation and policy governance to develop the peanut industry. Dramatic vicious cycle effects are seen in the per capita income of farmers and export shares. Capital investments and interventions in LDCs can turn them into developed industries.

EACH CATEGORY (Trillion USD)

Developed country

TOTAL GDP OF

entiate these Three category of add value. producers are:

- 1. Industrialisation of agriculture
- 2. Ownership structure of the enterprise
- 3. Government policies
- 4. State of Midstream segment
- 5. Level of integration

The Future

Attributes

Industrialisation

of Agriculture

Ownership

structure

Government policies

State of

Midstream

segment

Level of

Integration

28%

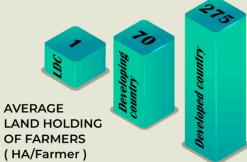
53%

27%

PRODUCTION SHARE %

PER CAPITA INCOME

OF FARMERS


\$13,000

38%

The future of the peanut market is becoming flat and integrated

holding of farmers show a huge that transcribes the features of some of the mature markets such as variance of 275 HA/farmer in the United States and evolved commodity markets like Sovabean developed regions and 1 HA/- and Corn. With technology taking over data crunching, information farmer in underdeveloped re- asymmetry results in a connected market where ONLY value-adders gions. As seen in a comparative have role to play. Industrialisation of the value streams means every table, key characters that differ- role player in the value stream will have to bring competitive edge to

Far behind integration

Developed **Developing Underdeveloped** High-tech, process/ Low-tech, adapted-No-Tech, traditional science driven tech and traditional or no practices/novice Corporate, Cooperative Family or individual Family owned, very & Family owned few corporates owned Strong policies across Strong policies to Family or individual all three streams of the support farming, owned developing industry from farming processing consumer policies on midstream. segment underdeveloped policies on consumer segment Modern-tech and large Dependent on tech and Cheap-tech, volume per processor traditional practices low volumes with low volumes

Integration has begun

Countries are categorized based on the development of the peanut industry.

DEVELOPED

- Argentina
- Brazil
- Mexico
- Nicaragua
- **USA**

DEVELOPING

- China
- India
- South Africa

UNDER DEVELOPED

- Rest of Africa
- Indonesia
- Myanmar
- Pakistan Thailand
- Vietnam

Mostly integrated

Northland's peanut trial shows promising results as peanuts thrive in the region's conditions. Project manager Greg Hall aims to establish a new industry, with trials spanning six sites across Northland. Varieties like High Oleic peanuts are being tested for commercial viability, especially for peanut butter production. In Pouto, where around 222,000 plants per hectare are thriving, irrigated versus non-irrigated plots are compared for feasibility. Harvest is expected by late March or early April, with each plant yielding 30-40 peanuts. Jeanette Johnston contributes expertise to the project, emphasizing peanuts' legume nature.

EDITOR

Argentine crop harvesting plays a crucial role in revitalizing moisture-deprived fields post-rain, highlighting its significance in agricultural resilience. Forecasts projecting a notable 33.41% export surge starkly contrast with the preceding year's 30.7% decline, instilling a sense of optimism within the market. Stable prices persist, sustained by consistent demand and the potential influence of Brazilian crop challenges, which could further stimulate export activities. Market stability awaits US 2024 crop clarity, paving way for price adjustments reflecting supply dynamics and global demand shifts.

Southern new crop harvest proceeds slowly, with one more month of steady supplies before dwindling. Despite a robust 2024 yield, profits suffer due to weak pricing and demand in export and local markets. Gujarat's summer crop arrives alongside Maharashtra's, both showing promise. Surplus stock from Winter 2023 aids upcoming sowing, boosting prices mildly. Tj 8090 trades between \$1150 to \$1200 to Indonesia, while demand remains sluggish in Vietnam, China, Malaysia, and Thailand for Indian peanuts.

Global Market

Meanwhile, the 2024 crop market sees some issues.

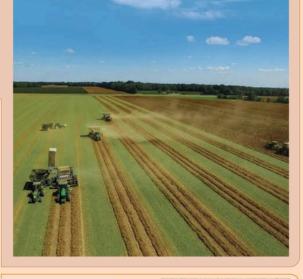
The US 2023 crop market remains activity, but buyers anticipate higher plantings steady with limited interest despite USDA numbers, influenced by low corn domestically and internationally, particularly and declining cotton prices. La Nina poses from Mexico and Europe. Prices hold firm due to weather risks, potentially affecting yields. US may low projected carryover, estimated at 800,000 fst. export more from 2024 crop due to Brazil's

Harvest

progress remains steady, with around 70% of areas prices in harvested, but quality markets. Reduced concerns persist, including Brazilian high aflatoxin levels reported competitiveness in by shellers. Yield variations the EU market, along across regions paint a mixed with quality issues picture; while Mogiana and and price drops, is Alta Paulista mention yields of expected to shrink 3.8 to 4 tons per hectare, the Brazilian share in Middle-Tiete, Borborema, grapples with crop. Additionally, lower productivity. Opinions the oil market on overall production levels situation range from maintaining last unchanged, with low year's output to slight demand and prices decreases, though some constraining export potential, peanut industry this season, farmers warn of a more March figures show the substantial decline. Growers lowest point of exports for

particularly EU imports for this remains

continue to seek high prices the 22/23 crop, with 13k tons


for their in shells, about US\$ of peanuts and 3k tons of 0.85 and 0.9 per KG, despite peanut oil exported. These challenges from competitive challenges underscore the international complexities facing

requiring careful navigation by stakeholders.

replenishing stocks in small amounts, while certain oil plants are developments closely. experiencing increased

The spot price of peanuts remains relatively stable, with demand-side arrivals, leading to slow unloading. Consequently, they have subsequently participants adopting a cautious approach, resulting in limited overall lowered purchase prices, although the market impact is currently limited. transaction volume. Farmers are holding back goods due to low volumes, 410 future now 9056, steady since last week drop, oil 2% FFA traded at with some entering busy farming periods. Middlemen are also cautious in 1775\$ to 1800\$ levels from India and Brazil. Sudan and Senegal inflows receiving goods, reflecting a low operating rate. Terminal demand shows are tepid, local pricing around 8800-9000. The next crop planting no significant signs of improvement, exacerbating the production-sales intensions are strong for peanuts amid poor prospects for other imbalance. Downstream merchants are imposing high prices, but their competing crops. Overall, a subdued market scenarios mirroring the state capacity to absorb goods is limited. Some traders are gradually of the economic conditions in China, with stakeholders monitoring

AFRICA

Tanzania The arrival of the new crop of peanuts from Tanzania has begun, with prices currently ranging from \$950 to \$1000. It is

anticipated that there will be a downward trend in prices in the upcoming period.

Mozambique The harvest started slow due to oversupply from 2023. Despite good quality, pricing similar to India's may deter Indonesian buyers, crucial for Mozambique. New crop prices range from 1100-1175, with few May shipments expected. Most produce is anticipated in June, facing tough competition from India's attractively priced summer crop.

Sudan Offerings range from \$1100 to \$1150, with China showing limited interest due to slow demand. Indonesia closes a few deals but with minimal volume, impacted by subdued post-Ramadan purchasing power. Sudan offers crushing-quality goods at \$900-\$1000/ton.

Senegal The government ends quota April 30th, shifting focus to local supplies. Plans agricultural reforms to boost development. The snack sector reacts to 560 CFA/Kg base price. Exports remain sluggish.

Current Grops

BRZ

CHI

IND

INDO

MOZ

Argentina

Crop harvesting is underway although very slowly after the latest rains.

ARG 3842 s1575 🗸

Around 70% of the areas have been harvested.

BRZ 4050 \$1650 🗸

China

This April - May, farmers will begin sowing new crops.

CHI 4151 s1400 🔻

India

New crop from Gujarat summer crop & Maharastra crops started to arrive. Big crop!

IND 5060 s1225 A

Indonesia

New harvest continue to flow to market, may last till mid June.

INDO 8090 \$1250 A

Mozambique

Average to below average crop, started to arrive, expecting good flow in June.

MOZ 8090 \$1050 🗸

SEN

Senegal

SEN 5060 \$1250 A

Tanzania

New crop started to arrive, more flow expected in May, good crop this time.

TAN 8090 \$950 ▼

TAN

U.S.A

USA 4050 s1800 A

VENNI) VOICE

As the CEO of GLOBAL TRADING AGROTECH SÉNÉGAL, boasting 20+ years of experience, I bring expertise in agricultural trade.

Mr. Ibrahima Ba CEO

Can you describe how the peanut products will evolve in the next 30 years?

Senegal, with the arrival of the new government

prioritizing agricultural growth, there's optimism for the groundnut sector. Focusing on credible Cooperative Societies is key to enhancing production. Renewing seed stocks is crucial for boosting output. Additionally, establishing processing industries is vital for the sector's development in the next 30 years, ensuring sustainability and economic prosperity for the nation.

From Waste to Value: The Role of Peanut Shells in Mushroom Cultivation

Peanut shells are used in mushroom production, especially oyster mushrooms, due to their sustainability, affordability, and beneficial properties. As a byproduct of the peanut industry, they provide a cost-effective and eco-friendly alternative to other substrates. Peanut shells possess a porous structure which allows for excellent aeration and moisture retention, crucial for fostering the growth of mycelium, the vegetative component of fungi. This structure helps maintain the necessary humidity around the mycelium while preventing the substrate from becoming too compact or waterlogged, which can hinder mushroom development. They are naturally rich in lignocellulosic material, which provides a robust food source for the mycelium to thrive on. Using peanut shells not only helps in reducing agricultural waste but also promotes a sustainable cycle of resource utilization, making them a favoured choice in environmentally conscious mushroom cultivation practices.

SUSTAINABILITY

Activated Carbon from Peanut Waste

Production Process:

Peanut shells converted into activated carbon through activation, heating the biomass at high temperatures with gases like steam or carbon dioxide. This creates a highly porous structure with significant adsorption properties.

WHY SHOULD WE CONSIDER **BUYING BIOCHAR CARBON** CREDITS?

- Biochar is the only large-scale commercial solution that allows CO2 sequestration at a reasonable price, unlike DAC.
- Carbon removal via biochar is a permanent event which lasts at least hundreds of year, sometimes even thousands.
- Each biochar has multiple environmental and social co-benefits in addition to removing CO2 from the atmosphere directly.
- Biochar carbon credits increase the accessibility of biochar for buyers who could not until now use it due to the price of biochar.

WHY SHOULD PRODUCERS **CONSIDER GENERATING** BIOCHAR CARBON CREDITS?

- Increase the recognition of biochar in diverse markets and therefore its
- Contribute to meeting climate change
- Increase production capacity for both biochar and carbon sequestration.

Biochar from Peanut Waste

Peanut shells and residues undergo pyrolysis, a process conducted without oxygen, to produce biochar along with bio-oil and syngas. Biochar, a stable carbon form, enhances soil fertility, water retention, and microbial activity. Its high carbon content allows long-term carbon sequestration, mitigating climate change by reducing atmospheric CO2. Furthermore, integrating biochar into soil enhances structure, nutrient retention, and plant growth, reducing reliance on chemical fertilizers and environmental pollution.

For net-zero targets, BCR isn't optional it's crucial. It can handle between 0.44-2.62 Gt CO2 removal yearly, covering up to 35% of CDR needs in climate stabilization scenarios.

- Biochar Carbon Removal is a way to sequester carbon dioxide from the atmosphere with wide-ranging co-benefits.
- Biochar's use as a soil amendment can improve food security and soil health while removing carbon from the atmosphere.
- Businesses seeking carbon removal credits should consider biochar as an avenue for maximum impact.

PEANUT PROSPERITY HARNESSING WASTE FOR WEALTH IN THE CIRCULAR ECONOMY

Transforming peanut waste into valuable products like biochar or activated carbon can indeed be an excellent way to generate wealth while promoting environmental sustainability.

Water and Air

and odors.

Waste Management

minimizing | providing environmental pollution.
practices.

Economic **Opportunities**

Market Demand

Activated carbon is widely demand for applications Carbon credits used to remove contami- ■ such as water treatment, air ■ financial incentives for nants from water and air purification, and industrial projects that reduce due to its high adsorption processes, creating a greenhouse gas emissions capacity for organic lucrative market for or sequester carbon, pollutants, heavy metals, products derived from encouraging investments in peanut wastemetals, and

Carbon Credits

Utilizing peanut waste for Similar to biochar, the production reduces the carbon from agricultural carbon production of activated amount of agricultural residues may qualify for residues sent to landfills, carbon offset credits, methane emissions and incentives for sustainable contributing to climate

Corporate Benefits

Activated carbon is in high Sustainability

sustainable practices.metals, and odors

financial additional income while change mitigation efforts

Projects reducing emissions or sequestering carbon earn carbon credits. tradable on markets for

offsetting emissions. Credits are based on verified reductions or sequestration, following rigorous monitoring. Converting peanut waste to biochar or activated carbon offers wealth and sustainability benefits. They provide environmental gains like sequestration and waste reduction, while creating revenue and carbon credit opportunities. Valorizing agricultural residues fosters a circular, resource-efficient economy.

BIRD FEED

NUTRIENT DYNAMICS IN BIRD PRESERVATION

Peanuts are rich in protein and fats which contributes muscle and feather growth in birds. Vitamin E enhances immunity and improves detoxification while PUFA prevent atherosclerosis and protect blood vessels in birds. Peanuts can prevent bird diseases such as Tibial dyschondroplasia, infertility, micromelia, cage layer fatigue, etc.,

Declining insect populations, coupled with habitat loss at a rate of 5.9 million hectares per decade, threaten a catastrophic collapse of ecosystems, potentially leading to the extinction of up to 14% of bird species by 2100.

Providing alternate food sources for birds, especially during times of crisis like the pandemic, can help mitigate the decline in bird populations and safeguard the balance of nature's ecosystems.

The increase in feeding habits even in the pandemic help the birds not to go extinct.

Pest population increases and cause damage to forest and cultivable crops, livestock, and forestry or cause a nuisance to people, especially in their homes.

DISEASE

Diseases like rabies will

feed on them and cause

human lives.

spread by small rodents due

to the decline in birds that

TRANSMISSIO

ECONOMIC COLLAPSE

Food shortage, diseases due to pesticide, famine, unemployment, and hyperinflation causes economic collapse.

WHAT IF **BIRDS**

EXTINCT?

CROP DESTRUCTION

There will be no seed dispersal, 5% pollination decreases, 1500 medicinal plants & 92% furniture trees will become extinct.

LOSS OF HABITAT

The animal species which depends on forest habitat will face severe food shortage, climate change. desertification

soil erosion, fewer crops, flooding, Increased greenhouse gases etc.

FACTS

A good peanut will power a cold chickadee for a day. Peanut will provide most of the micro and macronutrients for the birds it is also proven that a bird eating 16 Peanuts on average will produce healthy offspring.

The poor quality Peanuts will cause weakened immune response due to aflatoxin. It also results in the development of some infectious diseases such as coccidiosis, infectious bursa disease and respiratory infections.

Bird population v/s tree population Bird population v/s pest population

Bird population (In Billion)

Bird population (In Billion)

CHALLENGES & OPPORTUNITIES IN

DEVELOPING ALLERGEN-FREE

PEANUT PRODUCTS

Food allergy is a growing global health concern. It impacts approximately 5% of young children and 3% to 4% of adults in Westernized countries and is increasingly prevalent in developing countries. While almost any food can cause an allergic reaction, over 90% of food allergies are triggered by eight primary food sources: milk, egg, peanut, tree

For istance: Peanut allergy can be life-threatening, often persists into adulthood, and is chalenging to avoid completely. This poses significant quality-of-life issues for affected individuals and complicates allergen labelling for the food industry. Addressing this issue is crucial for both peanut-allergic individuals and the food industry.

nuts, shellfish, fish, wheat, and soy. Among these, peanuts are particularly allergenic. Peanut allergy is not only widespread but also escalating rapidly.

Methods to Reduce Peanut Allergenicity

Breeding: Conventional breeding is slow, and mutation breeding raises food safety

Source: Zhou Y, Wang JS, Yang XJ, Lin DH, Gao YF, Su YJ, Yang S, Zhang YJ, Zheng JJ. Peanut Allergy, Allergen Composition, and Methods of Reducing Allergenicity: A Review. Int J Food Sci. 2013;2013:909140. doi: 10.1155/2013/909140. Epub 2013 Jul 21. PMID: 26904614; PMCID: PMC4745518.

PEANUT SCIENCE

concerns, hindering progress in this method.

Heat and Pressure Treatment: While effective to some extent, roasting only assists in reducing allergenicity, boiling has limited effects, and autoclaving is energy-intensive and requires expensive equipment

Transgenic Technology: Promising for producing allergen-free varieties, but faces public resistance to genetically modified foods and flavor issues.

Tannic Acid: Useful but has significant drawbacks, making it more of an auxiliary method.

PUV (Pulsed Ultraviolet Light)

Treatment: Faces similar challenges as mutation breeding, limiting its development.

Magnetic Beads Capture: A promising method for reducing allergenicity.

Enzymatic Treatment:

Currently the most promising approach. It is mild, natural,

generally does not produce harmful substances, and is widely accepted by the public. Mohamed's team has developed a cost-effective enzymatic treatment that preserves peanut nutritional value, making it highly promising.

Fermentation: Holds great potential for reducing peanut allergenicity. It combines the advantages of enzymatic treatment, is often more cost-effective, and has been identified as a potential leading method despite being less frequently reported.

In conclusion, while several methods exist to reduce peanut allergenicity, enzymatic treatment and fermentation stand out as the most promising approaches. They offer effective, natural, and publically acceptable solutions to address the growing concern of peanut allergy worldwide.

The prevalence of peanut allergy in some countries:

U.S children	1.40%	Denmark	0.2-0.4%
Britain children	3.2%	Local Singapore school children (14–16 years old)	0.47%
Canadian children	1.03%	Philippine school children (14–16 years old)	0.43%

CONTRIBUTOR **SPOTLIGHT**

Mr. Deepauk **Procurement Mgr** Agrocrops

Mr. Jorge Rocha Sales Manager Samtraco

Yu Xiao Yan Manager QingDao FeiYang Seeds

Mr.Alex Izmirlian Co President Alimenta Agri LLC

Mr. Daman Chand Sr Mgr procurement Agrocrops

Upcoming Events

USA ____ PEANUT

JUNE 10-13

